

1.3 Review of epidemiological tables

RR, OR, confounding, stratification, trend

Risk

The simplest measure of risk (probability) is estimated from the proportion that is observed

Example:

If in a cohort of 11034 people, there were 189 who had an MI Risk of MI =189/11034=.0171 =1.7%

Can calculate risk from cohort or cross-sectional study but not from case-control study (traditional wisdom!)

For <u>any size table</u>, the Chi-square test answers the question: "is there an association between the two factors

How?

By calculating the "expected table" if no association and comparing to actual observed table

If the "discrepency" is large, conclude there is an association

How large? depends on size of table

Example of two-by-two table

Question: Is there evidence that marrow dose is associated with GVHD?

i.e. is the above Table what we would expect even if there is no association?

Overall GVHD rate=21/68

so *if no association*, we would expect:
21/68 of 36 in <3.0 group to get GVHD
and 21/68 of 32 in the other group

i.e. we expect

Compare:

Discrepency =
$$\sum \frac{(\text{observed - expected})^2}{\text{expected}}$$

= $\frac{(17 - 11.1)^2}{11.1} + \frac{(4 - 9.9)^2}{9.9} + \frac{(19 - 24.9)^2}{24.9} + \frac{(28 - 22.1)^2}{22.1}$
= 9.64

Is this large or small?

Tests of discrepancy

If no association, discrepency has a Chi-Squared distribution with 1 degree of freedom, $\chi^2_{(1)}$ (square of standard normal!)

	0.05	0.01	0.001
$\chi^{2}_{(1)}$	3.841	6.635	10.828

- our result has p-value < .01, so is unlikely to be simply due to randomness
- \Rightarrow we conclude that there **is** a difference in the two groups

This is called "*Pearson's Chi square test*"

For any size table (R rows, C columns), can also construct an observed and expected table, but under null hypothesis, distribution of discrepency now $\chi^2_{(R-1 \times C-1)}$

For 2-by-2 table, can also compare proportions using Relative Risk (Risk Ratio)

N Eng. Jour. Med. 1988 (262-264) Physicians Health Study: randomised trial of regular use of aspirin and 5-year MI rate

	Yes	No	Total
Placebo	189	10,845	11,034
Aspirin	104	10,933	11,037

Risk of MI for placebo =189/11034=.0171 Risk of MI for aspirin = 104/11037=.0094

 \Rightarrow RR=1.82

To assess significance: confidence interval (or Chi-square test)

Can also compare Odds (Odds Ratio)

Odds "the ratio of successes to failures"

Example: Dental Analgesic Trial

	<u>Relief</u>	
	Y	Ν
Active	24	6
Placebo	3	17

Odds of relief in Active = 24/6

Odds of relief in Placebo=3/17

Odds <u>Ratio</u> of relief in Active compared to Placebo :

24/6 ÷ 3/17 = 22.7 (p < .0001)!

 $OR = 1 \Rightarrow$ no association (like RR=1) $OR > 1 \Rightarrow$ + association $OR < 1 \Rightarrow$ - associationtreatment & relief

Reverse the Question

Compute OR of being on active treatment for those with pain relief compared to those with no pain relief

Example: Dental Analgesic Trial

	<u>Relief</u>	
	Y	Ν
Active	24	6
Placebo	3	17

same!

i.e. we can calculate and interpret OR from case-control studies

Traditional wisdom:

Only the OR is valid from case-control study

Relationship between OR and RR

Text book wisdom: if disease is rare then $OR \cong RR$

(as in placebo vs. aspirin example)

Crude and stratified OR (example from Zang and Wynder*)

Illustration of confounding

*Zang E and Wynder E. Preventive Med 3, 359-370,2001

Example for continuous variables

Where a "predictor" X is presumed to be associated causally with outcome, Y, but there is an additional variable, Z, that is associated with both X and Y

Wainer et al. Giving the Finger to Dating Services. CHANCE, 21:3, 59-61.

Examples of potential confounders

- Studied association
- Birth weight and adult heart disease

Confounder?

maternal smoking adult BMI/weight

Vitamin D and Mycardial infarction

fast food consumption sun exposure?

Prenatal tobacco and own tobacco use Parental smoking in childhood, gestational age?

Mantel-Haenszel OR (common OR) for binary outcome and exposure

= 351.367/347.988

= 1.0097

Can have any number of strata

So before computing OR_{MH} , we need to test whether it is reasonable to assume a common OR

"Tests of homogeneity"

- All are similar in spirit to the simple Chi-squared test of association
- compare the observed data in each stratum to what would be expected if there was a common OR (i.e. the overall OR)
- compare the total "discrepancy" to Chi-square distribution

Provided in statistical calculators (**Openepi.com**) and software

Example: Framingham data

Crude OR = 2.12

Test of homogeneity χ^2 =.04, p=.98 Mantel Haenszel OR = 1.5

Example: Framingham data (cont...)

Crude OR = 2.12

Mantel Haenszel OR = 1.5

<u>Conclude:</u> Confounding by age (adjusted differs by > 10% from crude)

Control of Confounding

Removing spurious associations from related variables can be done at the **design stage**, and/or the **analysis stage**.

confounding is due to "imbalance", so idea is to "balance" the design

Control of confounding at design stage

Restriction

- Confounding cannot occur if the factor <u>does not vary</u>.
 For example if the study is limited to non-smoking women, then smoking and gender cannot be confounding variables.
- Restriction also limits the participants/ interpretation of the study.
 Often partial restriction is used.

Matching

Later lecture

Control of confounding at analysis stage

- Stratification (as shown for age groups earlier)
- Calculate adjusted OR (Mantel-Haenszel)
- Use "logistic regression" (more later) in a statistical package

Effect modification (also called interaction)

When the effect of exposure is <u>different</u> in different strata (test of homogeneity provides evidence <u>against</u> a common OR),

We say:

the effect is "modified" by the stratum there is an "interaction"

Now a "common" OR not meaningful!!

If only a few strata, report the OR in each

Example: Framingham data

OR = 1.43

OR = 4.14

Test of homogeneity $\chi^2=7.13$, p=.008

Dose-response: test of trend

When the exposure is more than two levels and categories are ordered (e.g. age groups), may be a steady increase/ decrease in the risk with the 'dose' of exposure.

Important evidence: one of the Bradford-Hill criteria for causation

Return to alcohol and lung cancer (and smoking)example:

Dose-response: test of trend

Test of (any) association $\chi^2=186.8$, p-value < .000001 (from χ^2 with 3 d.o.f.)

χ^2 for trend (generally more powerful)

Where a_i = cases in each stratum

 \mathbf{x}_{i} = scores in the strata

- N= total number of subjects (cases + controls)
 - A = total number of cases

p= overall proportion cases

Expression in [] in numerator= Total score for cases – (no. of cases) (average score overall)

Expression in [] in denominator = variance of score (avg. of square – square of avg.)

Under Null Hypothesis (no trend) this has Chi-squared distribution with 1 degree of freedom

Test for trend (cont.)

Note we need to use scores: common to use midpoints.

For equally spaced strata, 1,2,3...give the same result

If no natural scores, can simply use 1,2,3.....

Chi-squared test not sensitive to the choice.

What if the exposure is continuous? (e.g. age, blood pressure, biomarker levels...)

Summary

- The effect of a risk factor on disease risk is usually measured by comparing prevalence, incidence, cumulative incidence or odds
- Comparisons in risk are most often based on relative difference, so by comparing the risk/odds of disease among exposed with the risk/odds among unexposed, e.g. RR or OR
- When comparing proportions across groups Chi-square tests are often used as a first test
 - \rightarrow However, only gives p-values and no measure of association

Summary (cont.)

- We looked at association between binary outcome and a single binary explanatory variable of interest
- Then we considered one explanatory variable and a confounder or stratum variable
 - \rightarrow Test of homogeneity
 - \rightarrow adjusted/common OR where appropriate
- Dose-reponse (test for trend)
- In practice we are often interested in a number of explanatory variables (independent risk factors, confounders, effect modifiers).
 So, after examining one-by-one ("univariate" analysis), we need to model their joint effect:

Logistic regression (later lecture)