1.3 Review of epidemiological tables

RR, OR, confounding, stratification, trend

Risk

The simplest measure of risk (probability) is estimated from the proportion that is observed

Example:

If in a cohort of 11034 people, there were 189 who had an MI Risk of $\mathrm{MI}=189 / 11034=.0171=1.7 \%$

Can calculate risk from cohort or cross-sectional study but not from case-control study (traditional wisdom!)

Comparing Proportions (Chi-square test)

For any size table, the Chi-square test answers the question: "is there an association between the two factors

How?

By calculating the "expected table" if no association and comparing to actual observed table

If the "discrepency" is large, conclude there is an association

How large? depends on size of table

Example of two-by-two table

Graft Rejection	Marrow Cell Dose(108 cells/kg)			
		<3.0	X3.0	Total
	Yes	17	4	21
	No	19	28	47
	Total			68
			Colum	Grand
			Totals	Total

Question: Is there evidence that marrow dose is associated with GVHD?
i.e. is the above Table what we would expect even
if there is no association?

Overall GVHD rate=21/68

-so if no association, we would expect:
-21/68 of 36 in <3.0 group to get GVHD
-and $21 / 68$ of 32 in the other group
i.e. we expect

Compare:

		Observed	
	<3.0	X3.0	
Yes	17	4	
No	19	28	

Expected (if no association)

<3.0	X3.0
11.1	9.9
24.9	22.1

$$
\begin{aligned}
\text { Discrepency } & =\sum \frac{(\text { observed -expected })^{2}}{\text { expected }} \\
& =\frac{(17-11.1)^{2}}{11.1}+\frac{(4-9.9)^{2}}{9.9}+\frac{(19-24.9)^{2}}{24.9}+\frac{(28-22.1)^{2}}{22.1} \\
& =9.64 \\
& \text { Is this large or small? }
\end{aligned}
$$

Tests of discrepancy

If no association, discrepency has a Chi-Squared distribution with 1 degree of freedom, $\chi^{2}{ }_{(1)}$ (square of standard normal!)

our result has p-value $<.01$, so is unlikely to be simply due to randomness
we conclude that there is a difference in the two groups
This is called "Pearson's Chi square test"

For any size table (R rows, C columns), can also construct an observed and expected table, but under null hypothesis, distribution of discrepency now $\chi^{2}(\mathrm{R}-1 \times \mathrm{C}-1)$

For 2-by-2 table, can also compare proportions using Relative Risk (Risk Ratio)

N Eng. Jour. Med. 1988 (262-264) Physicians Health Study: randomised trial of regular use of aspirin and 5-year MI rate

| | | Yes | No |
| :--- | :---: | :---: | :---: | Total $10.11,034$

Risk of MI for placebo $=189 / 11034=.0171$
Risk of MI for aspirin $=104 / 11037=.0094$
$\Rightarrow \mathrm{RR}=1.82$

To assess significance: confidence interval (or Chi-square test)

Can also compare Odds (Odds Ratio)

Odds
 "the ratio of successes to failures"

Example: Dental Analgesic Trial

	Relief	
	Y	N
Active	24	6
Placebo	3	17

Odds of relief in Active $=24 / 6$

Odds of relief in Placebo=3/17

Odds Ratio of relief in Active compared to Placebo :
$24 / 6 \div 3 / 17=22.7(p<.0001)!$
$\mathrm{OR}=1 \Rightarrow$ no association (like $\mathrm{RR}=1$)
OR $>1 \Rightarrow+$ association treatment \& relief
$\mathrm{OR}<1 \Rightarrow$ - association treatment and pain

Reverse the Question

Compute OR of being on active treatment for those with pain relief compared to those with no pain relief

Example: Dental Analgesic Trial

	Relief	
	Y	N
Active	24	6
Placebo	3	17

same!

i.e. we can calculate and interpret OR from case-control studies

Traditional wisdom:

Only the OR is valid from case-control study

Relationship between OR and RR

Text book wisdom: if disease is rare then $O R \cong R R$
(as in placebo vs. aspirin example)

Crude and stratified OR

(example from Zang and Wynder*)

	Overall			Smoker			Non-smoker		
	Lung Cancer		3006	Lung Cancer			Lung Cancer		
	Yes	No		Yes	No		Yes	No	
Heavy Drinker Light Drinker	1057	1949		786	665	1451	271	1248	1555
	1896	6220	8116	702	591	1293	1194	5629	6823
	2953	8169	11122	1488	1256	2744	1463	6913	8378
	$\mathrm{OR}=1.78$			$\mathrm{OR}=1.0$			$\mathrm{OR}=1.0$		

Illustration of confounding

[^0]
Smoking is a potential "confounder": Eme tisi Karolinska Institutet

Example for continuous variables

Where a "predictor" X is presumed to be associated causally with outcome, Y, but there is an additional variable, Z, that is associated with both X and Y

Wainer et al. Giving the Finger to Dating Services. CHANCE, 21:3, 59-61.

Examples of potential confounders

- Studied association
- Birth weight and adult heart disease
- Vitamin D and Mycardial infarction

Confounder?

maternal smoking adult BMI /weight
fast food consumption sun exposure?

- Prenatal tobacco and own tobacco use Parental smoking in childhood, gestational age?

Mantel-Haenszel OR (common OR)

 for binarv outcome and exposure| | Stratum 1 | |
| ---: | :---: | :---: |
| | Disease | |
| Exposed | No | |
| Enexposed | a_{1} | b_{1} |
| Uny | c_{1} | d_{1} |
| | | |

	Stratum 2	
	Disease	
Expo	No	
Enexposed	a_{2}	b_{2}
Uny	c_{2}	d_{2}

n_{1}

$$
\widehat{O R}_{M H}=\frac{\frac{a_{1} d_{1}}{n_{1}}+\frac{a_{2} d_{2}}{n_{2}}}{\frac{b_{1} c_{1}}{n_{1}}+\frac{b_{2} c_{2}}{n_{2}}} \longleftarrow \text { Main diagonals }
$$

$$
\begin{aligned}
\widehat{O R}_{M H} & =\frac{\frac{786 \times 591}{2744}+\frac{271 \times 5629}{8378}}{\frac{665 \times 702}{2744}+\frac{1248 \times 1194}{8378}} \\
& =351.367 / 347.988 \\
& =1.0097
\end{aligned}
$$

Can have any number of strata

The MH-OR estimates the common OR

So before computing $\mathrm{OR}_{\mathrm{MH}}$, we need to test whether it is reasonable to assume a common OR
"Tests of homogeneity"

- All are similar in spirit to the simple Chi-squared test of association
- compare the observed data in each stratum to what would be expected if there was a common OR (i.e. the overall OR)
- compare the total "discrepancy" to Chi-square distribution

Provided in statistical calculators (Openepi.com) and software

Example: Framingham data

Crude OR $=\mathbf{2 . 1 2}$

	Ages 42-51				Ages 52-61						Ages 62-71			
	Diabetes							etes					tes	
		Yes	No				Yes	No				Yes	No	
CHD	Yes	1	32	$\begin{gathered} 33 \\ 1581 \end{gathered}$	CHD	Yes	4	74	$\begin{gathered} 78 \\ 1268 \end{gathered}$	CHD	Yes	7	69	76
	No	28	1553			No	47	1221			No	29	440	469
		29	1585	1614			51	1295	1346			36	509	545
	$\mathrm{OR}=1.73$					$\mathrm{OR}=1.40$					$\mathrm{OR}=1.54$			

Test of homogeneity $\chi^{2}=.04, p=.98$

Mantel Haenszel OR $=1.5$

Example: Framingham data (cont...)

Crude OR $=2.12$

Mantel Haenszel OR $=1.5$

Conclude:
Confounding by age (adjusted differs by $>10 \%$ from crude)

Control of Confounding

Removing spurious associations from related variables can be done at the design stage, and/or the analysis stage.
confounding is due to "imbalance", so idea is to
"balance" the design

Control of confounding at design stage

Restriction

- Confounding cannot occur if the factor does not vary. For example if the study is limited to non-smoking women, then smoking and gender cannot be confounding variables.
- Restriction also limits the participants/interpretation of the study. Often partial restriction is used.

Matching

Later lecture

Control of confounding at analysis stage

- Stratification (as shown for age groups earlier)
- Calculate adjusted OR (Mantel-Haenszel)
- Use "logistic regression" (more later) in a statistical package

Effect modification (also called interaction)

When the effect of exposure is different in different strata (test of homogeneity provides evidence against a common OR),

We say:
the effect is "modified" by the stratum
there is an "interaction"

Now a "common" OR not meaningful!!

If only a few strata, report the OR in each

Example: Framingham data

Prev. Hypertension	Diabetes			
		Yes	No	
	Yes	67	1237	1304
	No	49	2152	2201
		116	3389	3505

Crude OR $=2.38$

	ales					nales			
		Dia	etes					etes	
		Yes	No	$\begin{aligned} & 545 \\ & 983 \end{aligned}$			Yes	No	
Prev. Hypertension	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$	25	520		Prev. Hypertension	Yes	42	717	759
		32	951			No	17	1201	1218
		57	1471	1528			59	1918	1977
$\mathrm{OR}=1.43$					$\mathrm{OR}=4.14$				

Test of homogeneity $\chi^{2}=7.13, \mathrm{p}=.008$

Dose-response: test of trend

When the exposure is more than two levels and categories are ordered (e.g. age groups), may be a steady increase/ decrease in the risk with the 'dose' of exposure.

Important evidence: one of the Bradford-Hill criteria for causation

Return to alcohol and lung cancer (and smoking)example:

Dose-response: test of trend

Lung Cancer			
	Yes	No	Odds
<1	1090	3976	. 274
1-3.9	806	2244	. 359
4-6.9	378	783	. 482
≥ 7	679	1166	. 582
	2953	8169	

Test of (any) association

$$
\left.\chi^{2}=186.8, \text { p-value }<.000001 \text { (from } \chi^{2} \text { with } 3 \text { d.o.f. }\right)
$$

χ^{2} for trend (generally more powerful)

Where $\mathrm{a}_{\mathrm{i}}=$ cases in each stratum
$\mathrm{x}_{\mathrm{i}}=$ scores in the strata
$\mathrm{N}=$ total number of subjects
(cases + controls)

A = total number of cases
$\mathrm{p}=$ overall proportion cases

Expression in [] in numerator=
Total score for cases - (no. of cases) (average score overall)
Expression in [] in denominator = variance of score (avg. of square - square of avg.)

Under Null Hypothesis (no trend) this has Chi-squared distribution with 1 degree of freedom

Test for trend (cont.)

Note we need to use scores: common to use midpoints.

For equally spaced strata, $1,2,3 \ldots$ give the same result

If no natural scores, can simply use $1,2,3 \ldots$.

Chi-squared test not sensitive to the choice.

What if the exposure is continuous?
 (e.g. age, blood pressure, biomarker levels...)

Summary

- The effect of a risk factor on disease risk is usually measured by comparing prevalence, incidence, cumulative incidence or odds
- Comparisons in risk are most often based on relative difference, so by comparing the risk/odds of disease among exposed with the risk/odds among unexposed, e.g. RR or OR
- When comparing proportions across groups Chi-square tests are often used as a first test
\rightarrow However, only gives p-values and no measure of association

Summary (cont.)

- We looked at association between binary outcome and a single binary explanatory variable of interest
- Then we considered one explanatory variable and a confounder or stratum variable
\rightarrow Test of homogeneity
\rightarrow adjusted/common OR where appropriate
- Dose-reponse (test for trend)
- In practice we are often interested in a number of explanatory variables (independent risk factors, confounders, effect modifiers). So, after examining one-by-one ("univariate" analysis), we need to model their joint effect:

Logistic regression (later lecture)

[^0]: * Zang E and Wynder E. Preventive Med 3, 359-370,2001

